Detailed Class Schedule: Metabolic Systems Biology for Biofuels

Contents	Lectures
1. Introduction to systems biology and bioenergy: cell metabolism: glycolysis	4
PP and others pathways, biochemical reactions, integration of components & cell systems	
2. Biochemical Networks for bioenergy: Metabolic networks, regulatory	6
networks, signaling networks, probabilistic regulation of metabolism,	
understanding metabolic systems biology	
3. Mathematical representation and simulation of biochemical Networks:	6
Stoichiometric Matrix, Finding Functional States of Networks, Fundamental	
Subspaces, Properties of solution spaces, sampling solution spaces, Flux	
Variability Analysis, Flux Coupling	
4. Metabolic Flux Analysis for Biofuels: Network Optimization in Matlab,	8
Flux balance analysis (FBA), dynamic flux balance analysis (DFBA), ¹³ C	
Metabolic Flux Analysis (¹³ C MFA)	
5. Network based pathways to energy production: Bioethanol, Butanol, fatty	4
acids, Bisabolene	
6. Improving microbial production of Biofuels: genetically modified	8
organisms and its comparison with wild type, gene knockout, pathway	
amplification, biofuels cytotoxicity, metabolic flux visualization, experimental	
data depot	
7. Quantitative methods for biofuels: Principal Component Analysis,	6
clustering methods, regression with ANOVA, Genetic Algorithm	
TOTAL	42

Professor Pralay Mitra is responsible for teaching Module 1 & 8, Total lectures: 10

Professor Amit Ghosh is responsible for teaching Module 2, 3, 4, 5, and 7, Total Lectures: 32